Molecularly Imprinted Polymers for Selective Extraction of Oblongifolin C from Garcinia yunnanensis Hu.
نویسندگان
چکیده
Molecularly imprinted polymers (MIPs) were synthesized and applied for the selective extraction of oblongifolin C (OC) from fruit extracts of Garcinia yunnanensis Hu. A series of experiments and computational approaches were employed to improve the efficiency of screening for optimal MIP systems in the study. The molar ratio (1:4) was eventually chosen based on the comparison of the binding energy of the complexes between the template (OC) and the functional monomers using density functional theory (DFT) at the RI-PBE-D3-gCP/def2-TZVP level of theory. The binding characterization and the molecular recognition mechanism of MIPs were further explained using the molecular modeling method along with NMR and IR spectra data. The reusability of this approach was demonstrated in over 20 batch rebinding experiments. A mass of 140.5 mg of OC (>95% purity) was obtained from the 5 g extracts, with 2 g of MIPs with the best binding properties, through a gradient elution program from 35% to 70% methanol-water solution. At the same time, another structural analog, 46.5 mg of guttiferone K (GK) (>88% purity), was also obtained by the gradient elution procedure. Our results showed that the structural analogs could be separated from the crude extracts by the molecularly imprinted solid-phase extraction (MISPE) using a gradient elution procedure for the first time.
منابع مشابه
Fabrication of a Selective and Sensitive Electrochemical Sensor Modified with Magnetic Molecularly Imprinted Polymer for Amoxicillin
A modified electrochemical sensor for the determination of amoxicillin (AMX) was reported in this paper. The magnetic molecularly imprinted polymer (MMIP) were suspended in AMX solution and then collected on the surface of a magnetic carbon paste electrode (CPE) via a permanent magnet, situated within the carbon paste electrode and then the voltammetry signals were recorded. It was confirmed th...
متن کاملSynthesis and Evaluating of Nanoporous Molecularly Imprinted Polymers for Extraction of Quercetin as a Bioactive Component of Medicinal Plants
In this work, the template, monomer, and cross-linker with the ratio of 1:8:40 were used to synthesize Molecularly Imprinted Polymers (MIPs) for extraction of the bioactive chemical compounds from some traditional herbs as a sorbent material. Quercetin, Methacrylic Acid (MAA), Trimethylolpropanetrimethacrylate (TRIM) and Tetrahydrofuran (THF) were used as a template, funct...
متن کاملSynthesis of a nanoporous molecularly imprinted polymers for dibutyl Phthalate extracted from Trichoderma Harzianum
In this study, molecularly imprinted polymers were synthesized for dibutyl phthalate as a bioactive chemical compound with antifungal activity which produced by Trichoderma Harzianum (JX1738521). The molecularly imprinted polymers were synthesized via precipitation polymerization method from methacrylic acid, dibutyl phthalate and trimetylolpropantrimethacrylate as a functional monomer, templat...
متن کاملSelective Extraction and Determination of Di(2-ethylhexyl) Phthalate in Aqueous Solution by HPLC Coupled with Molecularly Imprinted Solid-phase Extraction
Surface Molecularly Imprinted Polymer (SMIP) for selective adsorption of di(2-ethylhexyl) phthalate(DEHP) was prepared on the surface of silica gel which was modified by aminopropyltriethoxysilane and acryloyl chloride in a two-step method. The prepared SMIP was used to prepare Molecularly Imprinted Solid-Phase Extraction (MISPE) column for selective extraction of DEHP from aqueous solution...
متن کاملSeparation of STIGMA STEROL using magnetic molecularly imprinted nanopolymer fabricated by sol-gel method
Background & Aims: Magnetically molecularly imprinted polymers (MMIPs) are assumed as kind of sorbent polymers ‎which can separate or determine bioactive compounds from environment fast and specifically. ‎Magnetic properties, stability at various conditions (temperature , ionic strength and pH) and selective ‎function are among the advantages of these polymers in determin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 22 4 شماره
صفحات -
تاریخ انتشار 2017